PowerShell Crib Notes
By George Squillace

See SolarWinds webinar notes at the end of this.

	Activity {Help and Searching for cmdlets}
	Code and Notes

	Determine version, edition (i.e., Core, Desktop) of Windows PowerShell on a computer.
	$PSVersionTable

	Installing various versions of PowerShell (product documentation)
	https://aka.ms/pscore6get

The traditional PowerShell executable is PowerShell.exe.

The PowerShell Core executable is Pwsh.exe.

PowerShell and Core can co-exist.

	Getting help.
	Get-Help displays all help content.

Get-Help Get-ChildItem displays all help content

Get-Help *process* It accepts wildcards for cmdlet names.

Get-Help Stop-Process -Examples

Get-Help Stop-Process -Full to see the most complete help information for that cmdlet

-Show Window help shows up in a separate window

-Online Online version of the Help topic

-Parameter ParameterName

-Category Displays help only for certain categories of commands

Get-Help about* Provides a huge list of “about_” help topics regarding the PowerShell scripting language, operators and more (global shell techniques and features). You can then reference one of those help topics, such as:

Get-Help about_Workflows

	Update help
	Update-Help

	Download help to an alternate, user-specified location
	Save-Help

	Getting the name of cmdlet.
	Get-Command Lists every installed cmdlet, alias, function, filter, script, and application installed on the computer, and retrieves information such as name, category, version, and even the module that contains it.

You can also reverse this and find out what Module a cmdlet is hosted within.

Get-Command -Type cmdlet CmdletName

Get-Command SomeCommandName imports the module that contains the command.

Get-Command *process* Wildcards also supported. Lists every cmdlet with “process” in the name.

Also: Find-Command

	Filter portions of the cmdlet name using based on an attribute of the cmdlet
	-Module ModuleName Lists only cmdlets in the specified Module
-Noun
-Verb
Get-Command -Noun event* -Verb Get

	Comment code
	Use # for a single line comment and <# stuff #> as a block comment

	Activity {Modules}
	Code and Notes

	Modules are groups of cmdlets that are packaged together, a container of sorts.

	To use a cmdlet within a Module the Module must be imported (loaded)

	Retrieve list of imported Modules in the current session or that can be imported from the PSModulePath
	Get-Module
Get-Module -ListAvailable
Get-Module -Name ModuleName

	Load a Module into memory (after it has been installed)
	Import-Module Modulename

	Update a Module

	Update-Module -Name ModuleName

A bunch of other parameters exist.

	The PowerShell Gallery
	The central repository for sharing and acquiring PowerShell code including PowerShell modules, scripts, and DSC resources.

https://powershellgallery.com

The PowerShell Gallery uses PowerShellGet Module which contains cmdlets for finding and installing modules, scripts and commands.

Use Get-InstalledModule to get a list of modules on the computer that were installed by PowerShellGet.

You may have to run Set-PSRepository to trust PowerShellGet as a repository.

Another source of code is the Script Center

	To search for modules within the PowerShell Gallery
	Find-Module

	To search for scripts within the PowerShell Gallery
	Find-Script

	Install a Module

You can also uninstall a Module, but not referenced in this document.
	Install-Module -Name ModuleName

	A number of cmdlets have aliases.
	Get-Alias Returns all defined aliases.

Get-Alias di* Wildcards are available.

	Aliases can be added and removed, but, they are not saved between PowerShell sessions.cls

	New-Alias -Name “AliasName” morestuff_as_necessary

Get-Alias -definition Remove-Item reverses the process and find an alias (or multiple aliases) assigned to a cmdlet.

	To open a window that displays either a list of commands or the parameters for a specific command.
	Show-Command -Name cmdletName

You can then supply any values in the form that apply and/or are required and click on the “Run” or “Copy: buttons.

	Activity {Module Discovery}
	Code and Notes

	This lists some of the Module categories for Windows administration
	

	Active Directory
	· User Management
· Group Management
· Computer Object Management
· OU Object Management
· GPO Management
· Various AD object Management areas
· Move / New / Set / Remove / Sync…

	Networking
	· Managing IP Addresses
· Managing Routing
· Managing DNS Clients
· Managing Windows Firewall

	Server Manager
	Windows Features

	Hyper-V
	Many cmdlets available

	IIS Management
	

	Activity {Pipelines}
	Code and Notes

	A pipeline is one or more commands. Consider that each cmdlet/command is its own pipeline.
	Typical patterns are:

Get | Set, Get | Where, or Select | Set

“Where” is an alias for Where-Object and “Select” is an alias for Select-Object.

	The output of a cmdlet is a collection of objects, or Object for short.
	The structure of an Object is sort of like a table.

Each row is an “Object”.

Each column is a “Property” of the Object.

The rows are called a “Collection”.

	Members are the various components of an Object and include:
	· Properties
· Methods (perform some kind of action)
· Events

The default on-screen output does not include all of an Object’s properties as some Objects have hundreds.

	To list the Members of an Object:
	Get-Member Lists all Properties, Methods, and Events
 (alias, gm)

Get-Service | Get-Member

	To page the output of a cmdlet:
	Use | More which shows only one page of output, which does not work within the PowerShell ISE, only the console. A substitute to | More is Out-Host.

From there hit:
Spacebar Ü pages through the output.

Enter Z progresses through the output one line at a time.

	Formatting Pipeline output.

Cmdlets have a default output and these cmdlets can override the default output.

	| Format-List
(alias, fl), each Property on a separate line for each Object. Each object will have its own list. Particularly useful when a command returns a large number of Properties that would be hard to read in table format.

| Format-Table
Useful for displaying Properties of many Objects at the same time and comparing the Properties. Also provides
-AutoSize,
-HideTableHeaders, and
-Wrap.

| Format-Wide two column, single Property output. (alias, fw-all),
| Format-Custom requires creation of custom XML files

Each of these accepts the -Property parameter where one supplies a comma-separated list of property names.

	Activity {Selecting, Sorting, Measuring}
	Code and Notes

	Override the default sort output
	| Sort-Object two column, single Property output. (alias, sort,

Get-Service | Sort-Object -Property Name - Descending

Get-Service | Sort Name – Desc

Get-Service | Sort Status, Name

Get-Service | Sort-Object Status, Name |fw -GroupBy Status

See also Group-Object which gives more grouping control.

Other parameters apply.

	Aggregations can be applied to output
	Get-ChildItem -File | Measure -Property Length –Sum
–Average -Minimum -Max

	Select a subset of the Objects {rows} passed along the pipeline using Select-Object

	Get-Process | Sort-Object -Property VM | Select-Object -First 10

Get-Process | Sort-Object -Property CPU -Descending | Select-Object -First 5 -Skip 1

First | Last | Unique | Skip | Index | Unique

 (alias, select)

Sort-Object is used to control the object order prior to object selection.

	Select a specific set of Object Properties {columns} passed along the pipeline using Select-Object which requires -Property

	Get-Process | Select-Object -Property Name, ID, VM, PM, CPU | Format-Table comma delimited list of Properties

Get-Process | Sort-Object -Property CPU -Descending | Select-Object -Property Name, CPU -First 10 the ten processes using the most CPU.

	When using the PowerShell console you can break up a command over multiple lines and obtain an “extended prompt”
	…then hit Z when the code is complete.

	Calculated columns through hash tables
	

	Activity {Controlling Pipeline output with Comparison Operators}
	Code and Notes

	
	The operators are case insensitive with strings. Prefix each of the operators below with “c“, like -ceq for a case sensitive version.

	Equal to
	-eq

	Not equal to
	-ne

	Greater than
	-gt

	Less than
	-lt

	Less than or equal to
	-le

	Greater than or equal to
	-ge

	For pattern matching use the
-Like (or -cLike) operator with wildcards ? and *
	

	There are other, more advanced operators
	-in
-contains
-as
-match and -cmatch

	Another type of filtering can be accomplished with
Where-Object (alias Where)

There’s a basic (single comparison) and advanced form of usage.

There’s an extensive parameter list.
	Get-Service | Where Status -eq Running

	The advanced usage requires a filter script.

The filter script runs one time for each Object that is piped into the command.
	$PSItem (or $_ earlier versions of PowerShell) is a special variable created by Windows PowerShell. It represents whatever Object is piped into the Select-Object command.

The following are four equivalent commands:

Get-Service | Where Status -eq Running

Get-Service | Where-Object -FilterScript { $PSItem.Status -eq ‘Running’ }

Get-Service | Where { $PSItem.Status -eq ‘Running’ }
Get-Service | ? { $_.Status -eq ‘Running’ }

Combining criteria (each expression criterion must be complete):

Get-EventLog -LogName Security -Newest 100 |
Where { $PItem.EventID -eq 4672 -and $PSItem.EntryType -eq ‘SuccessAudit’ }

If the Property interrogated is already Boolean other operators are available.

Get-Process | Where { $PItem.Responding -eq $True } or
Get-Process | Where { $PItem.Responding }
Get-Process | Where { -not $PItem.Responding } negation

	Activity {Enumerating Objects in the Pipeline}
	Code and Notes

	Definition: Enumeration is the process of performing a task on each Object, one at a time, in a collection.
	Enumeration is not always required, as seen below...

Get-Process -Name Notepad | Stop-Process or
Stop-Process -Name Notepad

	The ForEach-Object command performs enumeration.

There is a basic and advanced syntax. Basic syntax can only access a single property.

The requirement for enumeration seems to be reduced with newer PowerShell commands
	Two common aliases are ForEach and %.

Three equivalent commands...(The -File Object type, System.IO.FileInfo has a method named Encrypt)

Get-ChildItem -Path E:\Data -File | ForEach-Object -MemberName Encrypt

Get-ChildItem -Path E:\Data -File | ForEach Encrypt

Get-ChildItem -Path E:\Data -File | % Encrypt

	The output of a cmdlet is a collection of objects, or Object for short.
	The structure of an Object is sort of like a table.

Each row is an “Object”.

Each column is a “Property” of the Object.

The rows are called a “Collection”.

	Activity {Sending Pipeline data as output}
	Code and Notes

	Output to a File
	Out-File (aliases > and, >>) accepts input from the pipeline. The output appears just as it would on screen. This is not the same as converting or exporting objects. This option is mostly for human consumption and not for reading back into PowerShell.

This terminates the pipeline.

> directs to a file, overwriting if it already exists
>> appends to an existing file.

Get-Service |
Sort-Object -Property Status, Name |
Select-Object -Property DisplayName, Status |
Out-File -FilePath ServiceList.csv

	Convert Output to CSV
	Converts the output to CSV and the data remains in the pipeline. CSV output produces column headers. There is also an Import-CSV cmdlet.

Get-Service | ConvertTo-CSV | Out-File Services.csv

Export commands, like Export-CSV, perform two operations: converting the data and then writing to external storage.

Get-Service | Export-CSV Services.csv

	Convert Output to XML
	ConvertTo-CliXML .The data remains in the pipeline.

Export-CliXML

	Convert Output to JSON
	ConvertTo-JSON .The data remains in the pipeline.

	Convert Output to HTML
	ConvertTo-HTML .The data remains in the pipeline.

Output can be controlled along with:
-Head
-Title
-PreContent content to appear before the table or list
-PostContent content to appear after the table or list

	Additional output options
	Out-Host more output control such as with -Paging
Out-Printer sends output to your default printer.
Out-Gridview interactive window that allows you to sort, filter and copy (but not save).

	Activity {Understanding How the Pipeline Works}
	Code and Notes

	Pipeline parameter binding
	This command…
Get-ADUser -Filter {Name -eq ‘Dan DeLion’} | Set-ADUser -City Seattle
…the Set-ADUser cmdlet actually has two parameters passed to it, the output of Get-ADUser and-City.

“When you connect two commands in the pipeline, pipeline parameter binding takes the output of the first command and decides what to do with it. The process selects one of the parameters of the second command to receive that output. Windows PowerShell has two techniques that it uses to make that decision.

ByValue always attempted first.
ByPropertyName used only when ByValue fails.

The ability to accept pipeline output is part of the definition of the parameter within the cmdlet code. Use Get-Help whatevercmdlet -Full …to determine the pipeline input capability of each parameter. See screenshot below.

A single command can have more tha one parameter accepting pipeline input x but each parameter must accept a different kind of object.

	
	There’s more content to this module.

[image:]

	Activity {Using PSProviders and PSDrives}
	Code and Notes

	A PSProvider, or Provider presents data as a hierarchical store.
	In managing IIS I could use an IIS specific cmdlet, like Get-WebSite or a more generic command like Get-ChildItem IIS:\Sites

	To list the available providers, and, the capabilities of each provider
	Get-PSProvider lists the providers in the current session, their capabilities, and their “drives”.
Get-PSProvider SomeProvider lists the above details for the specified Provider.

	Viewing help of a Provider
	Get-Help ProviderName

	A PSDrive, or Drive is a connection to a data store
	Get-PSDrive to see a list of available drives.

New-PSDrive used to create temporary and persistent mapped network drives.

Drive names do not include a colon Drives contain Items.
Items contain child items and properties.

	These drives are always available
	Registry drives HKLM and HKCU
Local hard drives like C
PowerShell storage drives Variable, Function, and Alias
Web Services for Management (WS-Management) WSMan
Environment Variables Env
Certificate Store Cert

	Verbs associated with PSDrive cmdlets
	New
Set
Get
Clear
Copy
Move
Remove
Rename
Invoke

	Commands that manage PSDrive locations
	Get-Location displays the current working location
Set-Location sets the current working location
Push-Location adds a location to the top of a location stack
Pop-Location changes the current location to the location at the top of a location stack

	To determine the alias mappings one would translate from a command prompt to PowerShell use Get-Alias
 or Get-Command.

PowerShell accepts both \ and / as path separators, so beware that Dir /s would not recurse
	Dir Dir /s = Get-ChildItem -Recurse
Move
Ren
RmDir
Del
Copy
MkDir
CD

	Relevant drive commands
	New-Item
Remove-Item
Get-Item Get-Item * = Get-ChildItem

	Activity {Using CIM and WMI}
	Code and Notes

	
	Get-WMIObject
Get-WMIMethod
Get-CIMClass
Get-CIMInstance

	
	Invoke-WMIMethod
Invoke-CIMMethod

	
	

	Activity {Using Variables}
	Code and Notes

	The main limitation of the pipeline is that the process flows only in one direction and it is diffult to perform complex operations. Variables solve this problem.
	Ideas:

· Store the name of a log file that you write data to multiple times
· Derive and store an email address based on the name of a user account
· Calculate and store the date of a day 30 days prior to the current day, to identify whether computer accounts have signed in during the last 30 days.

	Variables can hold simple data types like strings and numbers and also Objects
	There is PSDrive called Variable and use that with
Get-ChildItem like:
Get-ChildItem VariableName: to view Variable names, or,
Get-Variable

	Variable name rules and conventions
	It’s common to prefix PowerShell variable names with “$”, but only to make them easier to identify.

If variable names include a space the variable name must be enclosed in braces, like ${Log File}

	Assign a value to a variable with the = operator and you can also assign command output (single or multiple values) to a variable.

You can also use Set-Variable
	$Num = 10
$LogFile = “C:\Logs\log.text”
$User = Get-ADUser Administrator
$Service = Get-Service W32Time

	Show the value of a variable by typing its name and hitting Z
	$User Z

	To empty a variable
	$SomeVariable = $null

	Variable data types determine available manipulations
	Most of the time PowerShell automatically assigns a data type and that mostly works.

Some available data types are:

String
Int 32 bit integer
Double 64-bit floating point value, for decimals
DateTime
Bool stores values of $true and $false.

	Force a variable to accept only specific type of content (limitations apply)
	[Int]$Num2 = “5”
[DateTime]$date = “January 5, 2020 11:49AM”

	View a variables’ type
	$date.GetType()

	Activity {Manipulating Variables}
	Code and Notes

	Variables, just as objects, have properties and methods
	

	The simplest method for identifying the properties and methods available for a variable is to pipe the variable to
Get-Member
	$LogFile | Get-Member

	To browse through the properties and methods for a variable, you can use tab completion by typing the name of the variable appended with a dot. When you press Tab, the properties and methods available for the variable display.
	For more information on .NET Framework variable types, refer to “System Namespace” at:
https://aka.ms/krlgav

	String variables have only one property,
Length
	$LogFile.Length

	The following are some of the string variable methods.
	Contains(string value)
Insert(int startindex, string value)
Remove(int startindex, int count)
Replace(String value, string value)
Split(Char separator)
ToLower()
ToUpper()

	Date Properties
	Hour
Minute
Second
TimeOfDay
Date
DayOfWeek
Month
Year

	Date Methods
	AddDays(double value)
AddHours(double value)
AddMinutes(double value)
AddMonths(int months)
AddYears(int value)
ToLongDateString()
ToShortDateString()
<and more>

$date = Get-Date
$date
$date.DayOfWeek

	Activity {Arrays and Has Tables}
	Code and Notes

	Think of an Array as a Variable that contains multiple values or objects.
	A Variable has one value; an Array has more than one value.

	One way to create an Array is to create a comma-separated list.

	$Computer = “DC-BER”, “WEB-BER”, “VPN-BER”
$Numbers = 787, 2.71, 3.14

	Another way to create an Array is from the output from a command.

	$Users = Get-ADUser -Filter *
$Files = Get-ChildItem Z:\

	Verify whether a variable is an Array by using the GetType() method
	If true the BaseType listed will be System.Array.

	You can create an empty Array for when you have a loop that adds items to the Array
	$NewUsers = @()

	You can also force an Array to be created when adding a single value to a variable.
	[array]$Computers = “WEB-BER”

	Working with Arrays
	$Databases (displays all array items)
$Databases[0] (displays an item by its index number, starting at 0
$Databases = $Databases + $SomeOtherDB (adds a new item to the array)

To identify what you can do with the content in an array use
Get-Member such as:

$SQLAgentJobs | Get-Member

To view the properties and methods available for an array rather than its items
Get-Member -InputObject $SQLServers

	Working with Array Lists (for when you have to manipulate an array with a large amount of members)
	[System.Collections.ArrayList]$computers = “Srv1”, “Srv2”
<There are more details to this topic.>

	Working with Hash Tables
	Similar to an Array, as it stores multiple items. Unlike an Array a Hash Table uses a unique key for each item.

With a Hash Table as follows (which stores both computer names and IP addresses):

[image:]

…you access the first item in the hash table either of the two following ways:
$servers.’VPN-BER’ (the hyphen is a special character, which requires single quotes around the key)

$servers[’VPN-BER’]

	Define a Hash Table
	Similar to an Array, but you need both the key and the value.
· Begins with @
· Keys and associated values are enclosed in braces
· Items separated by a semicolon (when multiple items are on the same line)

$servers =@{“VPN-BER” = “172.16.7.11”; “DC-BER” = “172.16.9.111”}

	Adding and removing items is similar to an Array List
	$servers.Add(“CertSrv-BER”, “172.16.5.5”)
$servers.Remove(“VPN-BER”)

	You can also update the value for a key
	$servers.’Web-BER’= “172.16.3.71”)

	To view all properties and methods available for a Hash Table
	$server | Get-Member

	Activity {Basic Scripting}
	Code and Notes

	
	Script files have a .ps1 extension

	You have three options when you right click on a PowerShell script:
	· Open (in Notepad)
· Run with PowerShell (the PowerShell prompt closes on completion)
· Edit (opens the script in the PowerShell ISE)

	You have three options when you want to run a PowerShell script from the PowerShell prompt
	· E:\Scripts\Coolscript.ps1 full path to the script
· \Scripts\Coolscript.ps1 relative path to the script
· .\Coolscript.ps1 reference the current directory

	To control whether or not PowerShell scripts can be run on a computer you set the Execution Policy with these options:
	· Restricted no scripts can be run
· AllSigned scripts will only if they’re digitally signed
· RemoteSigned downloaded scripts will run only if digitally signed
· Unrestricted all scripts run but with a confirmation prompt
· ByPass all scripts are run without prompts

	Activity {Advanced Scripting}
	Code and Notes

	
	

	
	

	Activity {Using Background Jobs and Scheduled Jobs}
	Code and Notes

	
	

	
	

	Activity {Using Advanced Windows PowerShell Techniques}
	Code and Notes

	
	

	
	

SolarWinds Webcast on 2022-08-17

Ben Miller’s blog post is at DBADuck.com

[image:]
We’ll also add the “importexcel” module.
For Execution Policy you will want “Remote Signed”.

[image:]
You can save help files to a folder and then transfer that content.
Transcripts allow you to go “headless”. The opposite is Stop-Transcript. An input parameter to Start-Transcript is a path.
[image:]
Below – Azure Data Studio
[image:]

[image:]
Different shells available [below]
[image:]
PowerShell ISE is deprecated…memory leaks, etc.

[image:]
Don’t use “Unrestricted”

[image:]
Get-Command -module ___________ actually loads that module.

[image:]
When using the ShowWindow feature. There are settings in the Control menu of the window also.

[image:]
You get some code-writing help in Azure Data Studio.
Square brackets imply an array object.
You can install modules with “-force” (like a Jedi, hehe).
You can “side load” modules as well, the same module with different versions, I think.
When you import a module with maxversion or minversion, and maybe a specific version.
When you install the SQL Server product you get sqlps module.
At 12:40 he talked about a circumstance where you can have a sqlps conflict.

Get-Module -ListAvailable tells you if the module can even be loaded, and it will show available module versions.
Linux can run PowerShell.
In SSMS you can right click on a number of objects and choose “Start PowerShell”.
PowerShell runs on Providers.

[image:]

Type and execute $host and it will return what kind of console you have.

[image:]
Regarding the SQL Agent you want to set the path (or you may get an unwanted default) at the top of your PowerShell code.

Page 1 of 1
[These notes are derived from Microsoft course 10961C – Automating Administration with Windows PowerShell]
image1.png
-LiteralPath <System.String[1>
Specifies a path to one or more locations. The value of LiteralPath is used exactly as it's typed. No

characters are interpreted as wildcards. If the path includes escape characters, enclose it in single
quotation marks. Single quotation marks tell PowerShell to not interpret any characters as escape sequences.

For more information, see about_Quoting Rules (../Microsoft.Powershell.Core/About/about_Quoting Rules.md).

Required? true
Position? named
Default value None
Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

image2.png
Key Value
WEB-BER 172.16.8.3
DC-BER 172.16.9.111
VEN-BER 172.16.7.11

image3.png
How to Get Started Using PowerShell When You Know Nothing of It b
e Execution policy
e Tools — SSMS, ADS, VSCode
e Extensions in ADS, VSCode

e Modules — SqlServer, Dbatools

image4.png
Common Commands to Jump Start Your Journey

e Get-Command

e Get-Help (-showwindow), Update-Help, Save-Help
o Get-Member

e Start-Transcript

e Import-Module

e Get-ltem, Get-Childltem, Remove-ltem

o Get-Module (-ListAvailable)

A

image5.png
Ways to Immediately Take Advantage of PowerShell Using Current Tools

e Start with SSMS — Start PowerShell
e SQL Agent V

e ADS — with Extension

image6.png
ing Ben Miller's screen

Email : ben@benmiller.net
#

Allsigned, RemoteSigned, ByPass, Restricted (Unrestricted NO NO)
CurrentUser, LocalMachine, Process (MachinePolicy, UserPolicy)
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine

1
2
3
4
5 Get-ExecutionPolicy
6
7
&
9

13 Get-Command
14 Get-Command -Module dbatools
15 Get-Command *sql*

° TN =) +- 0
PS C:\Demo\Solarkinds>
PS C:\Demo\Solarkinds>
PS C:\Demo\Solarinds> []

-Help Export-DbaDiagnosticQuery -Showlindow

image7.png
Fle Edt View Hep e Powershe - o A Dt S

vo > Demotpst Extensio: Powershel o

PowerShell w2272

° Microsoft

o Admin Packfor SQLSer.

E ki Pack fox SQU Server . relop PowerShell scripts in A Studic
e o o

Databsse Adminisrto..

Prides ikina Wi Detals Festure Contrbutions Changelog Dependencies

e & Y ORI T e

arge e o
[J PowerShell Language Support for Visual Studio Code

i e e i aershllaatage suppot o Vil St Coce (5 Codl. Now you can e snd Resources

debug

vershell srips usingth excelnt DE ke et

sl St Cose provides. e

sovce sz e ol i

pevershet it lan

e —p—

wershel fenguagssemr el

S0LServe mpart

e oo

PS C:\Demo\Solariinds>
PS C:\Demo\Solariiinds> Get-Help Export-DbaDiagnosticQuery -Showlindow
PS C:\Demo\Solarkinds> []

NET i

image8.png
o Fle Bt View Hep Etenson: PowerShel - Solasinds - Azure Dta Stuio.

> Demotpst Extensio: Powershel o

PowerShell sz

Micrazot

Develop PowerShell septs i Azure Data St

’ s Data 1t
Databsse Adminisrto..

e

¢ i etension recommended by Ases Dt S

Detals Festure Contrbutions Changelog Dependencies

s N e ncloces thefolowing:

st * Ubuntu 20.04 with Powershel Core 725

SaLserve Dacpac et the mstalson nructions o get o detason v 0 s th etension o1 thes pstionns

Mo Read the troubleshooting guide fr snswers 1 commen questions. ° e
SOLServe mpart sedlt
50 Semarlomprt o e Features e

S0LServe Pr.

[1) > $psversiontable
Powsshel

EexReEmsesed Name Value
Psversion 5.1.17763.2931
PsEdition Desktop
MARKETPLAGE @ PsCompatibleVersions {ile, 2.0, 3.0, 4.0.
NET ntercive ot BuildVersion 10.6.17763.2931
u Amietosocs CLRVersion 4.9.30319.42000
usManstackversion

§0) oicipomenmann. PSRemotingProtocolVersion

W e

e BT serializationVersion 0.1
[

Azure SQL Migration 8/17/2022 10:17:34 AM :: [0.0099987 s] :: C:\Demo\SolarWinds
E [2] > []

image9.png
o Fle Bt View Hep ‘Dematps1 - Soiatinds - Azure Dot S

> Demotest 1 X & tension Powerhell b= m -

1@
£ Email : ben@benmiller.net
31
Azure Data LI %
(=] e S Get-ExecutionPolicy
=, Database Administratio. &
E Prodes il Widow 7 # Allsigned, RemoteSigned, ByPass, Restricted (Unrestricted NO NO)
:M:;mn 8 # CurrentUser, |LocalMachine, Process (MachinePolicy, UserPolicy)
B o 9 Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine
S 5

=] o T
", it 13 Get-Command

[14 Get-Command -Module dbatools

E e 15 Get-Command *sql*
- s

ronnus @ om s ek o o

[Spe—

S0LServe Pr.
SO Sorve P o

Fowashel Psversion 5.1.17763.2931

S esRsas PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
Buildversion 10.6.17763.2931

CLRVersion 4.0.30319.42000
WSManStackVersion 3.0
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1

e Bl 3/17/2022 10:17:34 AM :: [0.0099987 5] :: C:\Demo\SolarWinds
! o [2] > Get-ExecutionPolicy

e I RemoteSigned ——— 0 ——

Aewe s Migaion 8/17/2022 10:18:40 AM :: [0.0409925 5] :: C:\Demo\SolarWinds

ok [3] > []

image10.png
Dot pst - SoarVinds - Azue Data o

> Demotest 1 X & tension Powershe

7 # Allsigned, RemoteSigned, ByPass, Restricted (Unrestricted NO NO)
] 8 # CurrentUser, LocalMachine, Process (MachinePolicy, UserPolicy)

N N 9 Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine
. Jppart for Azure Data CU. 10

s Admin Packtor SOLSer
i ok for S

R ST—
E Frondesscetene Windows 12
e e, 13 Get-Command
| e 14 Get-Command -Module dbatools|
o 15 Get-Command *sql* 1
e 16
i 17 Get-Help get-service -Showhindow
P
MR 18
et 19 Update-Help
iz m 20 save-Help -Path C:\Demo\PSHelp
Pt O p——r—

S0LServe Pr.

Fowashel Psversion 5.1.17763.2931

S esRsas PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
Buildversion 10.6.17763.2931

CLRVersion 4.0.30319.42000
ushanstackVersion 3.0
PSRemotingProtocolversion 2.3
SerializationVersion ok
o Bl 3/17/2022 10:17:34 AM :: [0.0099987 5] :: C:\Demo\SolarWinds
! o [2] > Get-ExecutionPolicy

RemoteSigned
Ao s Mirion 8/17/2022 10:18:40 AM
Thssrmscn v [3] > []

C:\Demo\Solariinds

:: [0.8409925 5] :

[Spe—

>z m

image11.png
EF Get-service Help.

;w] [R5

You can direct this cmdlet to get only particular services by specifying the service name or the display name of the Service:
you can pipe service objects to this cmdlet.

Parameters

-ComputerName |<System.String[]>
Gets the s running on the specified computers. The default is the local computer.

Required? false
Position? named
Default value None
Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

-DependentServices <System.Management.Automation.SwitchParameters
Indicates that this cmdlet gets only the Services that depend upon the specified Service.

Required? false
Position? named
Default value False
Accept pipeline input? False

Accept wildcard characters? false

-DisplayName <System.String[]>

Specifies, as a string array, the display names of Services to be retrieved. Wildcards are permitted. By default, this cmdlet
gets all hs on the computer.

Required? true
Position? named
Default value None

image12.png
Flo £t View Hep Demot 1 - Solarids - Aaure Dt Studio

o = otension: Powershe > s m

Get-Help [[-Name] <string>] -
Get-Command Detailed [-Path <string>] [-

e w h; 14 Get-Command -Module db Category <string[]>] [-Component [l
ot for Az D L 15 Get-Command *sql* <string[]>] [-Functionality

Fea 16 . <string[1>] [-Role <string[]>]

B 17 Get-Help get-service -2/6 [<CommonParameters>]

:;‘ﬂ“;"“wmm ® 18 Get-Help get-service - 1

T 19 Update-Help «Informationvariable

e 20 save-Help -Path C:\DemwoOutVariable

o b 21 «outBuffer

M 22 Get-Member = Pipelinevariable

o s 23 $obj = new-object -typfdo-until do-until

e 24 $obj | Get-Member Cdo-while do-while
e 25 Cif-should-process [fShauldProcess
o Y e ritry-catch try-catch eoax
ST [try-catch-finally try-catch-fina ottt i
o @ Function New-DbaDbltai [Itry-finally try-finally 1.1.60 dbatools Elpovertet
Fomashel Function Read-DbaAudiin ctor-class. Class Constructor 1.1.60 dbatools
frosd » Function Read-DbaTrac —p1b_ function function Help 1-1.6¢ dbatools
Function Read-DbaXEFi e 1.1.66 dbatools
Function Remove -DbaDbFileGroup 1.1.66 dbatools
Function Remove-DbaDbiailProfile 1.1.66 dbatools
Function Set-DbaAgentJobOutputFile 1.1.66 dbatools
Function Set-DbaDbFileGroup 1.1.66 dbatools
Function Set-DbaDbFileGrowth 1.1.66 dbatools
Function Show-DbaInstanceFilesystem 1.1.66 dbatools
O oo =
! e ke Clicapaives. 8/17/2022 10:21:56 AM :: [0.0690009 s] :: C:\Demo\Solariinds
I [[6] > Get-Help get-service -ShowWindow
Ao s Mirion 8/17/2022 10:22:24 AM :: [0.4066634 s] :: C:\Demo\SolarWinds
i teron ety 171>]

image13.png
o Fle Bt View Hep Demol.gs1 -Solariinds - Azure Ota Studio

Ve > Demotest 1 @ & tension Powerhell >z m

38 Get-Module -ListAvailable *dba*

A 39
E i o o

Aawsvuacl 41 # Productivity helps
[e =
P y— 43 # ssis
) EEEEE 44 # ADS Notebooks

Managed Instance Dash. 45

v BN ————
47 Import-Module sqlserver

48 # DbaTools

S0LServerAg..
Mt @

——— 49 Import-Module ImportExcel
[pine s0 F
51 Get-Help Export-DbaDiagnosticQuery -Showhindow

SOLServe mpart
50LSevrmprt for e 52
Mot @

) O —— eonx
oL sever o S
S0 S oo
o @ Alias Alias Epobes
Fowashel c 49.05 40.35 FileSystem C:\ Demo\Solariinds
ELREEEs o Cert Certificate \
D Filesystem D:\
Env Environment
F 5.00 122.98 FileSystem F:\
Function Function
HKCU Registry HKEY_CURRENT_USER
2l T HKLM Registry HKEY_LOCAL_MACHINE
(i, SQLSERVER sqlserver SQLSERVER:\
@3 ocedsomenminn. Variable — Varisble
e B isMan WSHan 1
Ao s Mirion 8/17/2022 10:45:49 AM :: [0.1920034 5] :: C:\Demo\SolarWinds
oo aourane [21] >]

image14.png
(= Job Step Properties - step 1

Selectapage
General
Advanced

Conneclion

Server:
5QLo1

Connection:
DBADUCK dbaduck

¥ View connection properties

T Scipt ~ @ Help

Step name:

btep 1

Type:

| PowerShel

Run as:

SQL Server Agent Service Account

‘Command: Set-Location ¢ N
"1"."2" | Export-Csv path F:\SQLDATAfile csv

